Abstracto

Hybrid quantum-behaved particle swarm algorithm for nonlinear complementary problems

Tiefeng Zhu, Xueying Liu


Combining amultiplier penalty functionmethod of dealingwith constraints using the quantumparticle swarmoptimization (QPSO) algorithm, a hybrid QPSO algorithm is proposed for solving nonlinear complementary problems. This method utilizes the advantages of the QPSO and the multiplier penalty function method. The non-feasible particles produced in the iterative process are dealtwith using the multiplier penalty function method to produce feasible particles. Numerical experiments show that the proposed algorithm is effective.


Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

  • CAS
  • Google Académico
  • Abrir puerta J
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • CiteFactor
  • Cosmos SI
  • Directorio de indexación de revistas de investigación (DRJI)
  • Laboratorios secretos de motores de búsqueda
  • Factor de impacto del artículo académico (SAJI))
  • ICMJE

Ver más

Flyer