Abstracto

The classification of multiclass tumor gene expression data based on two-layer particle swarm optimization

Yajie Liu, Xinling Shi, Changxin Gou, Baolei Li, Lian Gao


The classification of gene expression data to determine different type of tumor samples is significantly important to research tumors in molecular biology level formaking further treatment plan of the patient. Particle swarm optimization (PSO) has employed as a solution for classification and clustering in bioinformatics. In this study, a classifier based on the two layer particle swarm optimization (TLPSO) algorithm is established to classify the uncertain training sample sets obtained from gene expression data of breast, prostate, lung and colon tumor samples. Compared with PSO and K-means algorithm in validation, the classification stability and accuracy based on the proposedTLPSOalgorithmis improved significantly, which may provide more information to clinicians for choosing more appropriate treatment.


Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

  • CAS
  • Google Académico
  • Abrir puerta J
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • CiteFactor
  • Cosmos SI
  • Directorio de indexación de revistas de investigación (DRJI)
  • Laboratorios secretos de motores de búsqueda
  • Factor de impacto del artículo académico (SAJI))
  • ICMJE

Ver más

Flyer