Abstracto

Selective binding of proteins on functional nanoparticles in a binary protein solution

Goutam Ghosh, Lata Panicker, Thomas J.Webster


The “reverse charge parity” model proposed by us establishes the selective electrostatic binding of charged proteins with oppositely charged functional iron oxide nanoparticles (IONP) in an aqueous solution [Ghosh et al 2014Mater. Res. Express 1 015017]. In this paper, we have investigated the selectivity in binding of charged proteins with oppositely charged functional IONP in a binary protein solution. IONP was surface functionalized both positively (e.g., coated with cetylpyridiniumiodide, or CPI) aswell as negatively (e.g., coated with tri-lithiumcitrate, or TLC). The binary protein solutionwas prepared bymixing a 1:1weight ratio of hen eggwhite lysozyme (HEWL) and ovalbumin (OVA) inwater.HEWL(pI 11) is positively charged and OVA (pI 4.5) is negatively charged in water. The binding of proteins with functional IONPwas characterized using several techniques, like, circular dichroism(CD), ultraviolet-visible (UV-vis), and fluorescence spectroscopy, -potential and DLS. The results confirm the application of “reverse charge parity” model for selective binding of proteins with functional nanoparticles even in a mixed protein environment. The effect of counterions (e.g., I¯ and Li+) on the protein conformation has also been discussed briefly.


Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

  • CAS
  • Google Académico
  • Abrir puerta J
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • CiteFactor
  • Cosmos SI
  • Biblioteca de revistas electrónicas
  • Directorio de indexación de revistas de investigación (DRJI)
  • Laboratorios secretos de motores de búsqueda
  • ICMJE

Ver más

Flyer